3.1.46 \(\int \frac {a+b x^2}{(c+d x^2)^{3/2} (e+f x^2)^{3/2}} \, dx\) [46]

Optimal. Leaf size=272 \[ -\frac {(b c-a d) x}{c (d e-c f) \sqrt {c+d x^2} \sqrt {e+f x^2}}-\frac {\sqrt {f} (2 b c e-a d e-a c f) \sqrt {c+d x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c \sqrt {e} (d e-c f)^2 \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}+\frac {\sqrt {e} (b d e+b c f-2 a d f) \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c \sqrt {f} (d e-c f)^2 \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}} \]

[Out]

-(-a*d+b*c)*x/c/(-c*f+d*e)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2)+(-2*a*d*f+b*c*f+b*d*e)*(1/(1+f*x^2/e))^(1/2)*(1+f*x
^2/e)^(1/2)*EllipticF(x*f^(1/2)/e^(1/2)/(1+f*x^2/e)^(1/2),(1-d*e/c/f)^(1/2))*e^(1/2)*(d*x^2+c)^(1/2)/c/(-c*f+d
*e)^2/f^(1/2)/(e*(d*x^2+c)/c/(f*x^2+e))^(1/2)/(f*x^2+e)^(1/2)-(-a*c*f-a*d*e+2*b*c*e)*(1/(1+f*x^2/e))^(1/2)*(1+
f*x^2/e)^(1/2)*EllipticE(x*f^(1/2)/e^(1/2)/(1+f*x^2/e)^(1/2),(1-d*e/c/f)^(1/2))*f^(1/2)*(d*x^2+c)^(1/2)/c/(-c*
f+d*e)^2/e^(1/2)/(e*(d*x^2+c)/c/(f*x^2+e))^(1/2)/(f*x^2+e)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 272, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {541, 539, 429, 422} \begin {gather*} \frac {\sqrt {e} \sqrt {c+d x^2} (-2 a d f+b c f+b d e) F\left (\text {ArcTan}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c \sqrt {f} \sqrt {e+f x^2} (d e-c f)^2 \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac {\sqrt {f} \sqrt {c+d x^2} (-a c f-a d e+2 b c e) E\left (\text {ArcTan}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c \sqrt {e} \sqrt {e+f x^2} (d e-c f)^2 \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac {x (b c-a d)}{c \sqrt {c+d x^2} \sqrt {e+f x^2} (d e-c f)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)/((c + d*x^2)^(3/2)*(e + f*x^2)^(3/2)),x]

[Out]

-(((b*c - a*d)*x)/(c*(d*e - c*f)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])) - (Sqrt[f]*(2*b*c*e - a*d*e - a*c*f)*Sqrt[c
 + d*x^2]*EllipticE[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(c*Sqrt[e]*(d*e - c*f)^2*Sqrt[(e*(c + d*x^2
))/(c*(e + f*x^2))]*Sqrt[e + f*x^2]) + (Sqrt[e]*(b*d*e + b*c*f - 2*a*d*f)*Sqrt[c + d*x^2]*EllipticF[ArcTan[(Sq
rt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(c*Sqrt[f]*(d*e - c*f)^2*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f
*x^2])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 539

Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)^(3/2)), x_Symbol] :> Dist[(b*e - a*
f)/(b*c - a*d), Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[Sqrt[a + b
*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[b/a] && PosQ[d/c]

Rule 541

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[(
-(b*e - a*f))*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*n*(b*c - a*d)*(p + 1))), x] + Dist[1/(a*n*(b*c - a
*d)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*
f)*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rubi steps

\begin {align*} \int \frac {a+b x^2}{\left (c+d x^2\right )^{3/2} \left (e+f x^2\right )^{3/2}} \, dx &=-\frac {(b c-a d) x}{c (d e-c f) \sqrt {c+d x^2} \sqrt {e+f x^2}}-\frac {\int \frac {-c (b e-a f)+(b c-a d) f x^2}{\sqrt {c+d x^2} \left (e+f x^2\right )^{3/2}} \, dx}{c (d e-c f)}\\ &=-\frac {(b c-a d) x}{c (d e-c f) \sqrt {c+d x^2} \sqrt {e+f x^2}}-\frac {(f (2 b c e-a d e-a c f)) \int \frac {\sqrt {c+d x^2}}{\left (e+f x^2\right )^{3/2}} \, dx}{c (d e-c f)^2}+\frac {(b d e+b c f-2 a d f) \int \frac {1}{\sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx}{(d e-c f)^2}\\ &=-\frac {(b c-a d) x}{c (d e-c f) \sqrt {c+d x^2} \sqrt {e+f x^2}}-\frac {\sqrt {f} (2 b c e-a d e-a c f) \sqrt {c+d x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c \sqrt {e} (d e-c f)^2 \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}+\frac {\sqrt {e} (b d e+b c f-2 a d f) \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c \sqrt {f} (d e-c f)^2 \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.51, size = 262, normalized size = 0.96 \begin {gather*} \frac {\sqrt {\frac {d}{c}} \left (\sqrt {\frac {d}{c}} x \left (a \left (c^2 f^2+c d f^2 x^2+d^2 e \left (e+f x^2\right )\right )-b c e \left (c f+d \left (e+2 f x^2\right )\right )\right )-i d e (2 b c e-a (d e+c f)) \sqrt {1+\frac {d x^2}{c}} \sqrt {1+\frac {f x^2}{e}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {d}{c}} x\right )|\frac {c f}{d e}\right )-i (b c-a d) e (-d e+c f) \sqrt {1+\frac {d x^2}{c}} \sqrt {1+\frac {f x^2}{e}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {d}{c}} x\right )|\frac {c f}{d e}\right )\right )}{d e (d e-c f)^2 \sqrt {c+d x^2} \sqrt {e+f x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)/((c + d*x^2)^(3/2)*(e + f*x^2)^(3/2)),x]

[Out]

(Sqrt[d/c]*(Sqrt[d/c]*x*(a*(c^2*f^2 + c*d*f^2*x^2 + d^2*e*(e + f*x^2)) - b*c*e*(c*f + d*(e + 2*f*x^2))) - I*d*
e*(2*b*c*e - a*(d*e + c*f))*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticE[I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d
*e)] - I*(b*c - a*d)*e*(-(d*e) + c*f)*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticF[I*ArcSinh[Sqrt[d/c]*x]
, (c*f)/(d*e)]))/(d*e*(d*e - c*f)^2*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 581, normalized size = 2.14

method result size
elliptic \(\frac {\sqrt {\left (d \,x^{2}+c \right ) \left (f \,x^{2}+e \right )}\, \left (-\frac {2 d f \left (-\frac {\left (a c f +a d e -2 b c e \right ) x^{3}}{2 c e \left (c^{2} f^{2}-2 c d e f +d^{2} e^{2}\right )}-\frac {\left (c^{2} a \,f^{2}+a \,d^{2} e^{2}-b \,c^{2} e f -b c d \,e^{2}\right ) x}{2 c e \left (c^{2} f^{2}-2 c d e f +d^{2} e^{2}\right ) d f}\right )}{\sqrt {\left (x^{4}+\frac {\left (c f +d e \right ) x^{2}}{d f}+\frac {c e}{d f}\right ) d f}}+\frac {\left (\frac {a}{c e}-\frac {c^{2} a \,f^{2}+a \,d^{2} e^{2}-b \,c^{2} e f -b c d \,e^{2}}{c e \left (c^{2} f^{2}-2 c d e f +d^{2} e^{2}\right )}\right ) \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )}{\sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}}+\frac {d \left (a c f +a d e -2 b c e \right ) \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \left (\EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )-\EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )\right )}{c \left (c^{2} f^{2}-2 c d e f +d^{2} e^{2}\right ) \sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}}\right )}{\sqrt {d \,x^{2}+c}\, \sqrt {f \,x^{2}+e}}\) \(515\)
default \(\frac {\left (\sqrt {-\frac {d}{c}}\, a c d \,f^{2} x^{3}+\sqrt {-\frac {d}{c}}\, a \,d^{2} e f \,x^{3}-2 \sqrt {-\frac {d}{c}}\, b c d e f \,x^{3}-\sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) a c d e f +\sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) a \,d^{2} e^{2}+\sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) b \,c^{2} e f -\sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) b c d \,e^{2}-\sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) a c d e f -\sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) a \,d^{2} e^{2}+2 \sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) b c d \,e^{2}+\sqrt {-\frac {d}{c}}\, a \,c^{2} f^{2} x +\sqrt {-\frac {d}{c}}\, a \,d^{2} e^{2} x -\sqrt {-\frac {d}{c}}\, b \,c^{2} e f x -\sqrt {-\frac {d}{c}}\, b c d \,e^{2} x \right ) \sqrt {f \,x^{2}+e}\, \sqrt {d \,x^{2}+c}}{c \sqrt {-\frac {d}{c}}\, e \left (c f -d e \right )^{2} \left (d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e \right )}\) \(581\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)/(d*x^2+c)^(3/2)/(f*x^2+e)^(3/2),x,method=_RETURNVERBOSE)

[Out]

((-d/c)^(1/2)*a*c*d*f^2*x^3+(-d/c)^(1/2)*a*d^2*e*f*x^3-2*(-d/c)^(1/2)*b*c*d*e*f*x^3-((d*x^2+c)/c)^(1/2)*((f*x^
2+e)/e)^(1/2)*EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*c*d*e*f+((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*Elli
pticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*d^2*e^2+((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticF(x*(-d/c)^(1/
2),(c*f/d/e)^(1/2))*b*c^2*e*f-((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2)
)*b*c*d*e^2-((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*c*d*e*f-((d*x^
2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*d^2*e^2+2*((d*x^2+c)/c)^(1/2)*((
f*x^2+e)/e)^(1/2)*EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*b*c*d*e^2+(-d/c)^(1/2)*a*c^2*f^2*x+(-d/c)^(1/2)*a*
d^2*e^2*x-(-d/c)^(1/2)*b*c^2*e*f*x-(-d/c)^(1/2)*b*c*d*e^2*x)*(f*x^2+e)^(1/2)*(d*x^2+c)^(1/2)/c/(-d/c)^(1/2)/e/
(c*f-d*e)^2/(d*f*x^4+c*f*x^2+d*e*x^2+c*e)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)/(d*x^2+c)^(3/2)/(f*x^2+e)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)/((d*x^2 + c)^(3/2)*(f*x^2 + e)^(3/2)), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)/(d*x^2+c)^(3/2)/(f*x^2+e)^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a + b x^{2}}{\left (c + d x^{2}\right )^{\frac {3}{2}} \left (e + f x^{2}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)/(d*x**2+c)**(3/2)/(f*x**2+e)**(3/2),x)

[Out]

Integral((a + b*x**2)/((c + d*x**2)**(3/2)*(e + f*x**2)**(3/2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)/(d*x^2+c)^(3/2)/(f*x^2+e)^(3/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)/((d*x^2 + c)^(3/2)*(f*x^2 + e)^(3/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {b\,x^2+a}{{\left (d\,x^2+c\right )}^{3/2}\,{\left (f\,x^2+e\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2)/((c + d*x^2)^(3/2)*(e + f*x^2)^(3/2)),x)

[Out]

int((a + b*x^2)/((c + d*x^2)^(3/2)*(e + f*x^2)^(3/2)), x)

________________________________________________________________________________________